Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Front Neuroinform ; 17: 1126783, 2023.
Artículo en Inglés | MEDLINE | ID: covidwho-2288801

RESUMEN

The novel coronavirus pneumonia (COVID-19) is a respiratory disease of great concern in terms of its dissemination and severity, for which X-ray imaging-based diagnosis is one of the effective complementary diagnostic methods. It is essential to be able to separate and identify lesions from their pathology images regardless of the computer-aided diagnosis techniques. Therefore, image segmentation in the pre-processing stage of COVID-19 pathology images would be more helpful for effective analysis. In this paper, to achieve highly effective pre-processing of COVID-19 pathological images by using multi-threshold image segmentation (MIS), an enhanced version of ant colony optimization for continuous domains (MGACO) is first proposed. In MGACO, not only a new move strategy is introduced, but also the Cauchy-Gaussian fusion strategy is incorporated. It has been accelerated in terms of convergence speed and has significantly enhanced its ability to jump out of the local optimum. Furthermore, an MIS method (MGACO-MIS) based on MGACO is developed, where it applies the non-local means, 2D histogram as the basis, and employs 2D Kapur's entropy as the fitness function. To demonstrate the performance of MGACO, we qualitatively analyze it in detail and compare it with other peers on 30 benchmark functions from IEEE CEC2014, which proves that it has a stronger capability of solving problems over the original ant colony optimization for continuous domains. To verify the segmentation effect of MGACO-MIS, we conducted a comparison experiment with eight other similar segmentation methods based on real pathology images of COVID-19 at different threshold levels. The final evaluation and analysis results fully demonstrate that the developed MGACO-MIS is sufficient to obtain high-quality segmentation results in the COVID-19 image segmentation and has stronger adaptability to different threshold levels than other methods. Therefore, it has been well-proven that MGACO is an excellent swarm intelligence optimization algorithm, and MGACO-MIS is also an excellent segmentation method.

2.
Biomed Signal Process Control ; 83: 104638, 2023 May.
Artículo en Inglés | MEDLINE | ID: covidwho-2246721

RESUMEN

Coronavirus Disease 2019 (COVID-19), instigated by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has hugely impacted global public health. To identify and intervene in critically ill patients early, this paper proposes an efficient, intelligent prediction model based on the machine learning approach, which combines the improved whale optimization algorithm (RRWOA) with the k-nearest neighbor (KNN) classifier. In order to improve the problem that WOA is prone to fall into local optimum, an improved version named RRWOA is proposed based on the random contraction strategy (RCS) and the Rosenbrock method. To verify the capability of the proposed algorithm, RRWOA is tested against nine classical metaheuristics, nine advanced metaheuristics, and seven well-known WOA variants based on 30 IEEE CEC2014 competition functions, respectively. The experimental results in mean, standard deviation, the Friedman test, and the Wilcoxon signed-rank test are considered, proving that RRWOA won first place on 18, 24, and 25 test functions, respectively. In addition, a binary version of the algorithm, called BRRWOA, is developed for feature selection problems. An efficient prediction model based on BRRWOA and KNN classifier is proposed and compared with seven existing binary metaheuristics based on 15 datasets of UCI repositories. The experimental results show that the proposed algorithm obtains the smallest fitness value in eleven datasets and can solve combinatorial optimization problems, indicating that it still performs well in discrete cases. More importantly, the model was compared with five other algorithms on the COVID-19 dataset. The experiment outcomes demonstrate that the model offers a scientific framework to support clinical diagnostic decision-making. Therefore, RRWOA is an effectively improved optimizer with efficient value.

3.
Front Neuroinform ; 16: 1055241, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-2246198

RESUMEN

Harris Hawks optimization (HHO) is a swarm optimization approach capable of handling a broad range of optimization problems. HHO, on the other hand, is commonly plagued by inadequate exploitation and a sluggish rate of convergence for certain numerical optimization. This study combines the fireworks algorithm's explosion search mechanism into HHO and proposes a framework for fireworks explosion-based HHo to address this issue (FWHHO). More specifically, the proposed FWHHO structure is comprised of two search phases: harris hawk search and fireworks explosion search. A search for fireworks explosion is done to identify locations where superior hawk solutions may be developed. On the CEC2014 benchmark functions, the FWHHO approach outperforms the most advanced algorithms currently available. Moreover, the new FWHHO framework is compared to four existing HHO and fireworks algorithms, and the experimental results suggest that FWHHO significantly outperforms existing HHO and fireworks algorithms. Finally, the proposed FWHHO is employed to evolve a kernel extreme learning machine for diagnosing COVID-19 utilizing biochemical indices. The statistical results suggest that the proposed FWHHO can discriminate and classify the severity of COVID-19, implying that it may be a computer-aided approach capable of providing adequate early warning for COVID-19 therapy and diagnosis.

4.
J Bionic Eng ; 20(3): 1198-1262, 2023.
Artículo en Inglés | MEDLINE | ID: covidwho-2241301

RESUMEN

Coronavirus Disease 2019 (COVID-19) is the most severe epidemic that is prevalent all over the world. How quickly and accurately identifying COVID-19 is of great significance to controlling the spread speed of the epidemic. Moreover, it is essential to accurately and rapidly identify COVID-19 lesions by analyzing Chest X-ray images. As we all know, image segmentation is a critical stage in image processing and analysis. To achieve better image segmentation results, this paper proposes to improve the multi-verse optimizer algorithm using the Rosenbrock method and diffusion mechanism named RDMVO. Then utilizes RDMVO to calculate the maximum Kapur's entropy for multilevel threshold image segmentation. This image segmentation scheme is called RDMVO-MIS. We ran two sets of experiments to test the performance of RDMVO and RDMVO-MIS. First, RDMVO was compared with other excellent peers on IEEE CEC2017 to test the performance of RDMVO on benchmark functions. Second, the image segmentation experiment was carried out using RDMVO-MIS, and some meta-heuristic algorithms were selected as comparisons. The test image dataset includes Berkeley images and COVID-19 Chest X-ray images. The experimental results verify that RDMVO is highly competitive in benchmark functions and image segmentation experiments compared with other meta-heuristic algorithms.

5.
Journal of bionic engineering ; : 1-65, 2023.
Artículo en Inglés | EuropePMC | ID: covidwho-2168462

RESUMEN

Coronavirus Disease 2019 (COVID-19) is the most severe epidemic that is prevalent all over the world. How quickly and accurately identifying COVID-19 is of great significance to controlling the spread speed of the epidemic. Moreover, it is essential to accurately and rapidly identify COVID-19 lesions by analyzing Chest X-ray images. As we all know, image segmentation is a critical stage in image processing and analysis. To achieve better image segmentation results, this paper proposes to improve the multi-verse optimizer algorithm using the Rosenbrock method and diffusion mechanism named RDMVO. Then utilizes RDMVO to calculate the maximum Kapur's entropy for multilevel threshold image segmentation. This image segmentation scheme is called RDMVO-MIS. We ran two sets of experiments to test the performance of RDMVO and RDMVO-MIS. First, RDMVO was compared with other excellent peers on IEEE CEC2017 to test the performance of RDMVO on benchmark functions. Second, the image segmentation experiment was carried out using RDMVO-MIS, and some meta-heuristic algorithms were selected as comparisons. The test image dataset includes Berkeley images and COVID-19 Chest X-ray images. The experimental results verify that RDMVO is highly competitive in benchmark functions and image segmentation experiments compared with other meta-heuristic algorithms.

6.
Comput Biol Med ; 153: 106338, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: covidwho-2122404

RESUMEN

Automated diagnostic techniques based on computed tomography (CT) scans of the chest for the coronavirus disease (COVID-19) help physicians detect suspected cases rapidly and precisely, which is critical in providing timely medical treatment and preventing the spread of epidemic outbreaks. Existing capsule networks have played a significant role in automatic COVID-19 detection systems based on small datasets. However, extracting key slices is difficult because CT scans typically show many scattered lesion sections. In addition, existing max pooling sampling methods cannot effectively fuse the features from multiple regions. Therefore, in this study, we propose an attention capsule sampling network (ACSN) to detect COVID-19 based on chest CT scans. A key slices enhancement method is used to obtain critical information from a large number of slices by applying attention enhancement to key slices. Then, the lost active and background features are retained by integrating two types of sampling. The results of experiments on an open dataset of 35,000 slices show that the proposed ACSN achieve high performance compared with state-of-the-art models and exhibits 96.3% accuracy, 98.8% sensitivity, 93.8% specificity, and 98.3% area under the receiver operating characteristic curve.


Asunto(s)
COVID-19 , Humanos , COVID-19/diagnóstico por imagen , SARS-CoV-2 , Tomografía Computarizada por Rayos X/métodos , Tórax , Curva ROC , Prueba de COVID-19
7.
Expert Syst Appl ; 213: 119095, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: covidwho-2082973

RESUMEN

COVID-19 is pervasive and threatens the safety of people around the world. Therefore, now, a method is needed to diagnose COVID-19 accurately. The identification of COVID-19 by X-ray images is a common method. The target area is extracted from the X-ray images by image segmentation to improve classification efficiency and help doctors make a diagnosis. In this paper, we propose an improved crow search algorithm (CSA) based on variable neighborhood descent (VND) and information exchange mutation (IEM) strategies, called VMCSA. The original CSA quickly falls into the local optimum, and the possibility of finding the best solution is significantly reduced. Therefore, to help the algorithm avoid falling into local optimality and improve the global search capability of the algorithm, we introduce VND and IEM into CSA. Comparative experiments are conducted at CEC2014 and CEC'21 to demonstrate the better performance of the proposed algorithm in optimization. We also apply the proposed algorithm to multi-level thresholding image segmentation using Renyi's entropy as the objective function to find the optimal threshold, where we construct 2-D histograms with grayscale images and non-local mean images and maximize the Renyi's entropy on top of the 2-D histogram. The proposed segmentation method is evaluated on X-ray images of COVID-19 and compared with some algorithms. VMCSA has a significant advantage in segmentation results and obtains better robustness than other algorithms. The available extra info can be found at https://github.com/1234zsw/VMCSA.

8.
Comput Biol Med ; 148: 105810, 2022 09.
Artículo en Inglés | MEDLINE | ID: covidwho-1926332

RESUMEN

This paper focuses on the study of Coronavirus Disease 2019 (COVID-19) X-ray image segmentation technology. We present a new multilevel image segmentation method based on the swarm intelligence algorithm (SIA) to enhance the image segmentation of COVID-19 X-rays. This paper first introduces an improved ant colony optimization algorithm, and later details the directional crossover (DX) and directional mutation (DM) strategy, XMACO. The DX strategy improves the quality of the population search, which enhances the convergence speed of the algorithm. The DM strategy increases the diversity of the population to jump out of the local optima (LO). Furthermore, we design the image segmentation model (MIS-XMACO) by incorporating two-dimensional (2D) histograms, 2D Kapur's entropy, and a nonlocal mean strategy, and we apply this model to COVID-19 X-ray image segmentation. Benchmark function experiments based on the IEEE CEC2014 and IEEE CEC2017 function sets demonstrate that XMACO has a faster convergence speed and higher convergence accuracy than competing models, and it can avoid falling into LO. Other SIAs and image segmentation models were used to ensure the validity of the experiments. The proposed MIS-XMACO model shows more stable and superior segmentation results than other models at different threshold levels by analyzing the experimental results.


Asunto(s)
COVID-19 , Algoritmos , Entropía , Humanos , Mutación , Rayos X
9.
Comput Biol Med ; 146: 105618, 2022 07.
Artículo en Inglés | MEDLINE | ID: covidwho-1850903

RESUMEN

COVID-19 is currently raging worldwide, with more patients being diagnosed every day. It usually is diagnosed by examining pathological photographs of the patient's lungs. There is a lot of detailed and essential information on chest radiographs, but manual processing is not as efficient or accurate. As a result, how efficiently analyzing and processing chest radiography of COVID-19 patients is an important research direction to promote COVID-19 diagnosis. To improve the processing efficiency of COVID-19 chest films, a multilevel thresholding image segmentation (MTIS) method based on an enhanced multiverse optimizer (CCMVO) is proposed. CCMVO is improved from the original Multi-Verse Optimizer by introducing horizontal and vertical search mechanisms. It has a more assertive global search ability and can jump out of the local optimum in optimization. The CCMVO-based MTIS method can obtain higher quality segmentation results than HHO, SCA, and other forms and is less prone to stagnation during the segmentation process. To verify the performance of the proposed CCMVO algorithm, CCMVO is first compared with DE, MVO, and other algorithms by 30 benchmark functions; then, the proposed CCMVO is applied to image segmentation of COVID-19 chest radiography; finally, this paper verifies that the combination of MTIS and CCMVO is very successful with good segmentation results by using the Feature Similarity Index (FSIM), the Peak Signal to Noise Ratio (PSNR), and the Structural Similarity Index (SSIM). Therefore, this research can provide an effective segmentation method for a medical organization to process COVID-19 chest radiography and then help doctors diagnose coronavirus pneumonia (COVID-19).


Asunto(s)
COVID-19 , Algoritmos , COVID-19/diagnóstico por imagen , Prueba de COVID-19 , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Radiografía , Relación Señal-Ruido
10.
Comput Biol Med ; 142: 105166, 2022 03.
Artículo en Inglés | MEDLINE | ID: covidwho-1588031

RESUMEN

Coronavirus disease-2019 (COVID-19) has made the world more cautious about widespread viruses, and a tragic pandemic that was caused by a novel coronavirus has harmed human beings in recent years. The new coronavirus pneumonia outbreak is spreading rapidly worldwide. We collect arterial blood samples from 51 patients with a COVID-19 diagnosis. Blood gas analysis is performed using a Siemens RAPID Point 500 blood gas analyzer. To accurately determine the factors that play a decisive role in the early recognition and discrimination of COVID-19 severity, a prediction framework that is based on an improved binary Harris hawk optimization (HHO) algorithm in combination with a kernel extreme learning machine is proposed in this paper. This method uses specular reflection learning to improve the original HHO algorithm and is referred to as HHOSRL. The experimental results show that the selected indicators, such as age, partial pressure of oxygen, oxygen saturation, sodium ion concentration, and lactic acid, are essential for the early accurate assessment of COVID-19 severity by the proposed feature selection method. The simulation results show that the established methodlogy can achieve promising performance. We believe that our proposed model provides an effective strategy for accurate early assessment of COVID-19 and distinguishing disease severity. The codes of HHO will be updated in https://aliasgharheidari.com/HHO.html.


Asunto(s)
COVID-19 , Falconiformes , Animales , Análisis de los Gases de la Sangre , Prueba de COVID-19 , Humanos , Aprendizaje Automático , SARS-CoV-2
11.
Comput Biol Med ; 142: 105181, 2022 03.
Artículo en Inglés | MEDLINE | ID: covidwho-1588026

RESUMEN

The artificial bee colony algorithm (ABC) has been successfully applied to various optimization problems, but the algorithm still suffers from slow convergence and poor quality of optimal solutions in the optimization process. Therefore, in this paper, an improved ABC (CCABC) based on a horizontal search mechanism and a vertical search mechanism is proposed to improve the algorithm's performance. In addition, this paper also presents a multilevel thresholding image segmentation (MTIS) method based on CCABC to enhance the effectiveness of the multilevel thresholding image segmentation method. To verify the performance of the proposed CCABC algorithm and the performance of the improved image segmentation method. First, this paper demonstrates the performance of the CCABC algorithm itself by comparing CCABC with 15 algorithms of the same type using 30 benchmark functions. Then, this paper uses the improved multi-threshold segmentation method for the segmentation of COVID-19 X-ray images and compares it with other similar plans in detail. Finally, this paper confirms that the incorporation of CCABC in MTIS is very effective by analyzing appropriate evaluation criteria and affirms that the new MTIS method has a strong segmentation performance.


Asunto(s)
COVID-19 , Procesamiento de Imagen Asistido por Computador , Algoritmos , Humanos , SARS-CoV-2 , Rayos X
12.
Comput Biol Med ; 139: 104941, 2021 12.
Artículo en Inglés | MEDLINE | ID: covidwho-1525746

RESUMEN

An appropriate threshold is a key to using the multi-threshold segmentation method to solve image segmentation problems, and the swarm intelligence (SI) optimization algorithm is one of the popular methods to obtain the optimal threshold. Moreover, Salp Swarm Algorithm (SSA) is a recently released swarm intelligent optimization algorithm. Compared with other SI optimization algorithms, the optimization solution strategy of the SSA still needs to be improved to enhance further the solution accuracy and optimization efficiency of the algorithm. Accordingly, this paper designs an effective segmentation method based on a non-local mean 2D histogram and 2D Kapur's entropy called SSA with Gaussian Barebone and Stochastic Fractal Search (GBSFSSSA) by combining Gaussian Barebone and Stochastic Fractal Search mechanism. In GBSFSSSA, the Gaussian Barebone and Stochastic Fractal Search mechanism effectively balance the global search ability and local search ability of the basic SSA. The CEC2017 competition data set is used to prove the algorithm's performance, and GBSFSSSA shows an absolute advantage over some typical competitive algorithms. Furthermore, the algorithm is applied in image segmentation of COVID-19 CT images, and the results are analyzed based on three different metrics: peak signal-to-noise ratio (PSNR), structural similarity (SSIM), and feature similarity (FSIM), which can lead to the conclusion that the overall performance of GBSFSSSA is better than the comparison algorithm and can effectively improve the segmentation of medical images. Therefore, it is justified that GBSFSSSA is a reliable and effective method in solving the multi-threshold image segmentation problem.


Asunto(s)
COVID-19 , Procesamiento de Imagen Asistido por Computador , Algoritmos , Fractales , Humanos , SARS-CoV-2
13.
IEEE Access ; 9: 45486-45503, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1522547

RESUMEN

This paper has proposed an effective intelligent prediction model that can well discriminate and specify the severity of Coronavirus Disease 2019 (COVID-19) infection in clinical diagnosis and provide a criterion for clinicians to weigh scientific and rational medical decision-making. With indicators as the age and gender of the patients and 26 blood routine indexes, a severity prediction framework for COVID-19 is proposed based on machine learning techniques. The framework consists mainly of a random forest and a support vector machine (SVM) model optimized by a slime mould algorithm (SMA). When the random forest was used to identify the key factors, SMA was employed to train an optimal SVM model. Based on the COVID-19 data, comparative experiments were conducted between RF-SMA-SVM and several well-known machine learning algorithms performed. The results indicate that the proposed RF-SMA-SVM not only achieves better classification performance and higher stability on four metrics, but also screens out the main factors that distinguish severe COVID-19 patients from non-severe ones. Therefore, there is a conclusion that the RF-SMA-SVM model can provide an effective auxiliary diagnosis scheme for the clinical diagnosis of COVID-19 infection.

14.
Journal of King Saud University - Computer and Information Sciences ; 2021.
Artículo en Inglés | ScienceDirect | ID: covidwho-1446874

RESUMEN

Coronavirus 2019 (COVID-19) is an extreme acute respiratory syndrome. Early diagnosis and accurate assessment of COVID-19 are not available, resulting in ineffective therapeutic therapy. This study designs an effective intelligence framework to early recognition and discrimination of COVID-19 severity from the perspective of coagulation indexes. The framework is proposed by integrating an enhanced new stochastic optimizer, a brain storm optimizing algorithm (EBSO), with an evolutionary machine learning algorithm called EBSO-SVM. Fast convergence and low risk of the local stagnant can be guaranteed for EBSO with added by Harris hawks optimization (HHO), and its property is verified on 23 benchmarks. Then, the EBSO is utilized to perform parameter optimization and feature selection simultaneously for support vector machine (SVM), and the presented EBSO-SVM early recognition and discrimination of COVID-19 severity in terms of coagulation indexes using COVID-19 clinical data. The classification performance of the EBSO-SVM is very promising, reaching 91.9195% accuracy, 90.529% Matthews correlation coefficient, 90.9912% Sensitivity and 88.5705% Specificity on COVID-19. Compared with other existing state-of-the-art methods, the EBSO-SVM in this paper still shows obvious advantages in multiple metrics. The statistical results demonstrate that the proposed EBSO-SVM shows predictive properties for all metrics and higher stability, which can be treated as a computer-aided technique for analysis of COVID-19 severity from the perspective of coagulation.

15.
Comput Biol Med ; 136: 104698, 2021 09.
Artículo en Inglés | MEDLINE | ID: covidwho-1330718

RESUMEN

Coronavirus Disease 2019 (COVID-19) was distributed globally at the end of December 2019 due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Early diagnosis and successful COVID-19 assessment are missing, clinical care is ineffective, and deaths are high. In this study, we investigate whether the level of biochemical indicators helps to discriminate and classify the severity of the COVID-19 using the machine learning method. This research creates an efficient intelligence method for the diagnosis of COVID-19 from the perspective of biochemical indexes. The framework is proposed by integrating an enhanced new stochastic called the colony predation algorithm (CPA) with a kernel extreme learning machine (KELM), abbreviated as ECPA-KELM. The core feature of the approach is the ECPA algorithm which incorporates the two main operators that have been abstained from the grey wolf optimizer and moth-flame optimizer to improve and restore the CPA research functions and are simultaneously used to optimize the parameters and to select features for KELM. The ECPA output is checked thoroughly using IEEE CEC2017 benchmark to verify the capacity of the proposed methodology. Finally, in the diagnosis of COVID-19 using biochemical indexes, the designed ECPA-KELM model and other competing KELM models based on other optimization are used. Checking statistical results will display improved predictive properties for all metrics and higher stability. ECPA-KELM can also be used to discriminate and classify the severity of the COVID-19 as a possible computer-aided method and provide effective early warning for the treatment and diagnosis of COVID-19.


Asunto(s)
COVID-19 , Conducta Predatoria , Algoritmos , Animales , Humanos , Aprendizaje Automático , SARS-CoV-2
16.
Comput Biol Med ; 136: 104609, 2021 09.
Artículo en Inglés | MEDLINE | ID: covidwho-1293682

RESUMEN

This paper focuses on the study of multilevel COVID-19 X-ray image segmentation based on swarm intelligence optimization to improve the diagnostic level of COVID-19. We present a new ant colony optimization with the Cauchy mutation and the greedy Levy mutation, termed CLACO, for continuous domains. Specifically, the Cauchy mutation is applied to the end phase of ant foraging in CLACO to enhance its searchability and to boost its convergence rate. The greedy Levy mutation is applied to the optimal ant individuals to confer an improved ability to jump out of the local optimum. Furthermore, this paper develops a novel CLACO-based multilevel image segmentation method, termed CLACO-MIS. Using 2D Kapur's entropy as the CLACO fitness function based on 2D histograms consisting of non-local mean filtered images and grayscale images, CLACO-MIS was successfully applied to the segmentation of COVID-19 X-ray images. A comparison of CLACO with some relevant variants and other excellent peers on 30 benchmark functions from IEEE CEC2014 demonstrates the superior performance of CLACO in terms of search capability, and convergence speed as well as ability to jump out of the local optimum. Moreover, CLACO-MIS was shown to have a better segmentation effect and a stronger adaptability at different threshold levels than other methods in performing segmentation experiments of COVID-19 X-ray images. Therefore, CLACO-MIS has great potential to be used for improving the diagnostic level of COVID-19. This research will host a webservice for any question at https://aliasgharheidari.com.


Asunto(s)
COVID-19 , Procesamiento de Imagen Asistido por Computador , Algoritmos , COVID-19/diagnóstico por imagen , Humanos , Mutación , SARS-CoV-2 , Rayos X
17.
IEEE Access ; 9: 17787-17802, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1105107

RESUMEN

This study is devoted to proposing a useful intelligent prediction model to distinguish the severity of COVID-19, to provide a more fair and reasonable reference for assisting clinical diagnostic decision-making. Based on patients' necessary information, pre-existing diseases, symptoms, immune indexes, and complications, this article proposes a prediction model using the Harris hawks optimization (HHO) to optimize the Fuzzy K-nearest neighbor (FKNN), which is called HHO-FKNN. This model is utilized to distinguish the severity of COVID-19. In HHO-FKNN, the purpose of introducing HHO is to optimize the FKNN's optimal parameters and feature subsets simultaneously. Also, based on actual COVID-19 data, we conducted a comparative experiment between HHO-FKNN and several well-known machine learning algorithms, which result shows that not only the proposed HHO-FKNN can obtain better classification performance and higher stability on the four indexes but also screen out the key features that distinguish severe COVID-19 from mild COVID-19. Therefore, we can conclude that the proposed HHO-FKNN model is expected to become a useful tool for COVID-19 prediction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA